PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nprofelimr-P4.6b

Theorem nprofelimr-P4.6b 391
Description: Negated Process of Elimination (right).
Hypotheses
Ref Expression
nprofelimr-P4.6b.1 (𝛾 → ¬ (𝜑𝜓))
nprofelimr-P4.6b.2 (𝛾𝜓)
Assertion
Ref Expression
nprofelimr-P4.6b (𝛾 → ¬ 𝜑)

Proof of Theorem nprofelimr-P4.6b
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 ((𝛾𝜑) → 𝜑)
2 nprofelimr-P4.6b.2 . . . 4 (𝛾𝜓)
32rcp-NDIMP1add1 208 . . 3 ((𝛾𝜑) → 𝜓)
41, 3ndandi-P3.7 172 . 2 ((𝛾𝜑) → (𝜑𝜓))
5 nprofelimr-P4.6b.1 . . 3 (𝛾 → ¬ (𝜑𝜓))
65rcp-NDIMP1add1 208 . 2 ((𝛾𝜑) → ¬ (𝜑𝜓))
74, 6rcp-NDNEGI2 219 1 (𝛾 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  nprofelimr-P4.6b.RC  392
  Copyright terms: Public domain W3C validator