PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  falseprofelimr-P4.7b

Theorem falseprofelimr-P4.7b 395
Description: Process of Elimination Utilizing '' (right).
Hypotheses
Ref Expression
falseprofelimr-P4.7b.1 (𝛾 → (𝜑𝜓))
falseprofelimr-P4.7b.2 (𝛾 → (𝜓 → ⊥))
Assertion
Ref Expression
falseprofelimr-P4.7b (𝛾𝜑)

Proof of Theorem falseprofelimr-P4.7b
StepHypRef Expression
1 falseprofelimr-P4.7b.1 . 2 (𝛾 → (𝜑𝜓))
2 rcp-NDASM2of2 194 . . . 4 ((𝛾𝜓) → 𝜓)
3 falseprofelimr-P4.7b.2 . . . . 5 (𝛾 → (𝜓 → ⊥))
43rcp-NDIMP1add1 208 . . . 4 ((𝛾𝜓) → (𝜓 → ⊥))
52, 4ndime-P3.6 171 . . 3 ((𝛾𝜓) → ⊥)
65falseimpoe-P4.4c 383 . . 3 ((𝛾𝜓) → ¬ ⊥)
75, 6rcp-NDNEGI2 219 . 2 (𝛾 → ¬ 𝜓)
81, 7profelimr-P4.5b 387 1 (𝛾𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-or 144  wff-false 157
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158
This theorem is referenced by:  falseprofelimr-P4.7b.RC  396
  Copyright terms: Public domain W3C validator