| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > falseprofelimr-P4.7b | |||
| Description: Process of Elimination Utilizing '⊥' (right). † |
| Ref | Expression |
|---|---|
| falseprofelimr-P4.7b.1 | ⊢ (𝛾 → (𝜑 ∨ 𝜓)) |
| falseprofelimr-P4.7b.2 | ⊢ (𝛾 → (𝜓 → ⊥)) |
| Ref | Expression |
|---|---|
| falseprofelimr-P4.7b | ⊢ (𝛾 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falseprofelimr-P4.7b.1 | . 2 ⊢ (𝛾 → (𝜑 ∨ 𝜓)) | |
| 2 | rcp-NDASM2of2 194 | . . . 4 ⊢ ((𝛾 ∧ 𝜓) → 𝜓) | |
| 3 | falseprofelimr-P4.7b.2 | . . . . 5 ⊢ (𝛾 → (𝜓 → ⊥)) | |
| 4 | 3 | rcp-NDIMP1add1 208 | . . . 4 ⊢ ((𝛾 ∧ 𝜓) → (𝜓 → ⊥)) |
| 5 | 2, 4 | ndime-P3.6 171 | . . 3 ⊢ ((𝛾 ∧ 𝜓) → ⊥) |
| 6 | 5 | falseimpoe-P4.4c 383 | . . 3 ⊢ ((𝛾 ∧ 𝜓) → ¬ ⊥) |
| 7 | 5, 6 | rcp-NDNEGI2 219 | . 2 ⊢ (𝛾 → ¬ 𝜓) |
| 8 | 1, 7 | profelimr-P4.5b 387 | 1 ⊢ (𝛾 → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 ⊥wff-false 157 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-false-D2.5 158 |
| This theorem is referenced by: falseprofelimr-P4.7b.RC 396 |
| Copyright terms: Public domain | W3C validator |