PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  profeliml-P4.5a.RC

Theorem profeliml-P4.5a.RC 386
Description: Inference Form of profeliml-P4.5a 385.
Hypotheses
Ref Expression
profeliml-P4.5a.RC.1 (𝜑𝜓)
profeliml-P4.5a.RC.2 ¬ 𝜑
Assertion
Ref Expression
profeliml-P4.5a.RC 𝜓

Proof of Theorem profeliml-P4.5a.RC
StepHypRef Expression
1 profeliml-P4.5a.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
3 profeliml-P4.5a.RC.2 . . . 4 ¬ 𝜑
43ndtruei-P3.17 182 . . 3 (⊤ → ¬ 𝜑)
52, 4profeliml-P4.5a 385 . 2 (⊤ → 𝜓)
65ndtruee-P3.18 183 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator