PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbil-P3.41a-L1

Theorem subbil-P3.41a-L1 331
Description: Lemma for subbil-P3.41a 332.
Hypothesis
Ref Expression
subbil-P3.41a-L1.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subbil-P3.41a-L1 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))

Proof of Theorem subbil-P3.41a-L1
StepHypRef Expression
1 subbil-P3.41a-L1.1 . . . . 5 (𝛾 → (𝜑𝜓))
21rcp-NDIMP1add1 208 . . . 4 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜓))
32bisym-P3.33b 298 . . 3 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜑))
4 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ (𝜑𝜒)) → (𝜑𝜒))
53, 4bitrns-P3.33c 302 . 2 ((𝛾 ∧ (𝜑𝜒)) → (𝜓𝜒))
65rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subbil-P3.41a  332
  Copyright terms: Public domain W3C validator