PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andasimint-P3.46b

Theorem andasimint-P3.46b 357
Description: Necessary Condition for (i.e. "If" part of) '' Defined in Terms of '' and '¬'.

Only this direction is deducible with intuitionist logic.

Assertion
Ref Expression
andasimint-P3.46b ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))

Proof of Theorem andasimint-P3.46b
StepHypRef Expression
1 andasim-P3.46-L1 354 1 ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator