PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andasim-P3.46-L1

Theorem andasim-P3.46-L1 354
Description: Lemma for andasim-P3.46a 356 and andasimint-P3.46b 357.
Assertion
Ref Expression
andasim-P3.46-L1 ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))

Proof of Theorem andasim-P3.46-L1
StepHypRef Expression
1 rcp-NDASM1of2 193 . . 3 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → (𝜑𝜓))
21ndandel-P3.8 173 . 2 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → 𝜓)
31ndander-P3.9 174 . . 3 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → 𝜑)
4 rcp-NDASM2of2 194 . . 3 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → (𝜑 → ¬ 𝜓))
53, 4ndime-P3.6 171 . 2 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜓)
62, 5rcp-NDNEGI2 219 1 ((𝜑𝜓) → ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andasim-P3.46a  356  andasimint-P3.46b  357
  Copyright terms: Public domain W3C validator