PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andasim-P3.46-L2

Theorem andasim-P3.46-L2 355
Description: Lemma for andasim-P3.46a 356.
Assertion
Ref Expression
andasim-P3.46-L2 (¬ (𝜑 → ¬ 𝜓) → (𝜑𝜓))

Proof of Theorem andasim-P3.46-L2
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . . . 6 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜑) → ¬ 𝜑)
21axL1-P3.21 252 . . . . 5 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜑) → (𝜓 → ¬ 𝜑))
32trnsp-P3.31a 279 . . . 4 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜑) → (𝜑 → ¬ 𝜓))
4 rcp-NDASM1of2 193 . . . 4 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜑) → ¬ (𝜑 → ¬ 𝜓))
53, 4rcp-NDNEGI2 219 . . 3 (¬ (𝜑 → ¬ 𝜓) → ¬ ¬ 𝜑)
65dnege-P3.30 276 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜑)
7 rcp-NDASM2of2 194 . . . . 5 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜓) → ¬ 𝜓)
87axL1-P3.21 252 . . . 4 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜓) → (𝜑 → ¬ 𝜓))
9 rcp-NDASM1of2 193 . . . 4 ((¬ (𝜑 → ¬ 𝜓) ∧ ¬ 𝜓) → ¬ (𝜑 → ¬ 𝜓))
108, 9rcp-NDNEGI2 219 . . 3 (¬ (𝜑 → ¬ 𝜓) → ¬ ¬ 𝜓)
1110dnege-P3.30 276 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜓)
126, 11ndandi-P3.7 172 1 (¬ (𝜑 → ¬ 𝜓) → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  andasim-P3.46a  356
  Copyright terms: Public domain W3C validator