Proof of Theorem andasim-P3.46-L2
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM2of2 194 |
. . . . . 6
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜑) → ¬ 𝜑) |
| 2 | 1 | axL1-P3.21 252 |
. . . . 5
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜑) → (𝜓 → ¬ 𝜑)) |
| 3 | 2 | trnsp-P3.31a 279 |
. . . 4
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜑) → (𝜑 → ¬ 𝜓)) |
| 4 | | rcp-NDASM1of2 193 |
. . . 4
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜑) → ¬ (𝜑 → ¬ 𝜓)) |
| 5 | 3, 4 | rcp-NDNEGI2 219 |
. . 3
⊢ (¬ (𝜑 → ¬ 𝜓)
→ ¬ ¬ 𝜑) |
| 6 | 5 | dnege-P3.30 276 |
. 2
⊢ (¬ (𝜑 → ¬ 𝜓)
→ 𝜑) |
| 7 | | rcp-NDASM2of2 194 |
. . . . 5
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜓) → ¬ 𝜓) |
| 8 | 7 | axL1-P3.21 252 |
. . . 4
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 9 | | rcp-NDASM1of2 193 |
. . . 4
⊢ ((¬ (𝜑 → ¬ 𝜓)
∧ ¬ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 10 | 8, 9 | rcp-NDNEGI2 219 |
. . 3
⊢ (¬ (𝜑 → ¬ 𝜓)
→ ¬ ¬ 𝜓) |
| 11 | 10 | dnege-P3.30 276 |
. 2
⊢ (¬ (𝜑 → ¬ 𝜓)
→ 𝜓) |
| 12 | 6, 11 | ndandi-P3.7 172 |
1
⊢ (¬ (𝜑 → ¬ 𝜓)
→ (𝜑 ∧ 𝜓)) |