PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nimpoe-P4.4b

Theorem nimpoe-P4.4b 380
Description: Variation of Principle of Explosion Using Implication (negated form).
Hypothesis
Ref Expression
nimpoe-P4.4b.1 (𝛾𝜑)
Assertion
Ref Expression
nimpoe-P4.4b (𝛾 → (¬ 𝜑𝜓))

Proof of Theorem nimpoe-P4.4b
StepHypRef Expression
1 nimpoe-P4.4b.1 . . . 4 (𝛾𝜑)
21rcp-NDIMP1add1 208 . . 3 ((𝛾 ∧ ¬ 𝜑) → 𝜑)
3 rcp-NDASM2of2 194 . . 3 ((𝛾 ∧ ¬ 𝜑) → ¬ 𝜑)
42, 3ndnege-P3.4 169 . 2 ((𝛾 ∧ ¬ 𝜑) → 𝜓)
54rcp-NDIMI2 224 1 (𝛾 → (¬ 𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  nimpoe-P4.4b.RC  381  nimpoe-P4.4b.CL  382  exnegallint-P7  1047
  Copyright terms: Public domain W3C validator