PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrall2-P7.9

Theorem ndnfrall2-P7.9 834
Description: Natural Deduction: Effective Non-Freeness Rule 9.

If '𝑥' is (conditionally) effectively not free in '𝜑', then '𝑥' is also (conditionally) effectively not free in '𝑦𝜑', where '𝑦' is different from '𝑥' and neither '𝑥' nor '𝑦' are effectively free in the context, '𝛾'.

Hypotheses
Ref Expression
ndnfrall2-P7.9.1 𝑥𝛾
ndnfrall2-P7.9.2 𝑦𝛾
ndnfrall2-P7.9.3 (𝛾 → Ⅎ𝑥𝜑)
Assertion
Ref Expression
ndnfrall2-P7.9 (𝛾 → Ⅎ𝑥𝑦𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem ndnfrall2-P7.9
StepHypRef Expression
1 ndnfrall2-P7.9.1 . 2 𝑥𝛾
2 ndnfrall2-P7.9.2 . 2 𝑦𝛾
3 ndnfrall2-P7.9.3 . 2 (𝛾 → Ⅎ𝑥𝜑)
41, 2, 3nfrall2d-P6 819 1 (𝛾 → Ⅎ𝑥𝑦𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  ndnfrall2-P7.9.VR12of2  860
  Copyright terms: Public domain W3C validator