PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  nfrthm-P7

Theorem nfrthm-P7 926
Description: Every Variable is ENF in a Theorem.
Hypothesis
Ref Expression
nfrthm-P7.1 𝜑
Assertion
Ref Expression
nfrthm-P7 𝑥𝜑

Proof of Theorem nfrthm-P7
StepHypRef Expression
1 ndnfrv-P7.1 826 . 2 𝑥
2 nfrthm-P7.1 . . . 4 𝜑
32thmeqtrue-P4.21a 442 . . 3 (𝜑 ↔ ⊤)
43ndnfrleq-P7.11.RC 882 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥⊤)
51, 4bimpr-P4.RC 534 1 𝑥𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  axGEN-P7  933  nfrthm-P8  1107
  Copyright terms: Public domain W3C validator