| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > nfrthm-P7 | |||
| Description: Every Variable is ENF in a Theorem. † |
| Ref | Expression |
|---|---|
| nfrthm-P7.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| nfrthm-P7 | ⊢ Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrv-P7.1 826 | . 2 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfrthm-P7.1 | . . . 4 ⊢ 𝜑 | |
| 3 | 2 | thmeqtrue-P4.21a 442 | . . 3 ⊢ (𝜑 ↔ ⊤) |
| 4 | 3 | ndnfrleq-P7.11.RC 882 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥⊤) |
| 5 | 1, 4 | bimpr-P4.RC 534 | 1 ⊢ Ⅎ𝑥𝜑 |
| Colors of variables: wff objvar term class |
| Syntax hints: ⊤wff-true 153 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: axGEN-P7 933 nfrthm-P8 1107 |
| Copyright terms: Public domain | W3C validator |