PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqtrns-P7

Theorem eqtrns-P7 987
Description: Equivalence Property: '=' Transitivity.
Hypotheses
Ref Expression
eqtrns-P7.1 (𝛾𝑡 = 𝑢)
eqtrns-P7.2 (𝛾𝑢 = 𝑤)
Assertion
Ref Expression
eqtrns-P7 (𝛾𝑡 = 𝑤)

Proof of Theorem eqtrns-P7
StepHypRef Expression
1 eqtrns-P7.1 . 2 (𝛾𝑡 = 𝑢)
2 eqtrns-P7.2 . . 3 (𝛾𝑢 = 𝑤)
32ndsubeqr-P7.22b 848 . 2 (𝛾 → (𝑡 = 𝑢𝑡 = 𝑤))
41, 3bimpf-P4 531 1 (𝛾𝑡 = 𝑤)
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  eqtrns-P7.RC  988  eqtrns-P7.CL  989  example-E7.1a  1074  example-E7.1b  1075
  Copyright terms: Public domain W3C validator