| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > eqsym-P7 | |||
| Description: Equivalence Property: '=' Symmetry. † |
| Ref | Expression |
|---|---|
| eqsym-P7.1 | ⊢ (𝛾 → 𝑡 = 𝑢) |
| Ref | Expression |
|---|---|
| eqsym-P7 | ⊢ (𝛾 → 𝑢 = 𝑡) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndeqi-P7.21 846 | . . 3 ⊢ 𝑡 = 𝑡 | |
| 2 | 1 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → 𝑡 = 𝑡) |
| 3 | eqsym-P7.1 | . . 3 ⊢ (𝛾 → 𝑡 = 𝑢) | |
| 4 | 3 | ndsubeql-P7.22a 847 | . 2 ⊢ (𝛾 → (𝑡 = 𝑡 ↔ 𝑢 = 𝑡)) |
| 5 | 2, 4 | bimpf-P4 531 | 1 ⊢ (𝛾 → 𝑢 = 𝑡) |
| Colors of variables: wff objvar term class |
| Syntax hints: = wff-equals 6 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: eqsym-P7.CL 937 eqsym-P7r 983 eqsym-P7r.RC 984 |
| Copyright terms: Public domain | W3C validator |