PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  eqsym-P7r.RC

Theorem eqsym-P7r.RC 984
Description: Inference Form of eqsym-P7r 983.
Hypothesis
Ref Expression
eqsym-P7r.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
eqsym-P7r.RC 𝑢 = 𝑡

Proof of Theorem eqsym-P7r.RC
StepHypRef Expression
1 eqsym-P7r.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32eqsym-P7 936 . 2 (⊤ → 𝑢 = 𝑡)
43ndtruee-P3.18 183 1 𝑢 = 𝑡
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator