PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubeqd-P7.RC

Theorem ndsubeqd-P7.RC 893
Description: Inference Form of ndsubeqd-P7 856.
Hypotheses
Ref Expression
ndsubeqd-P7.RC.1 𝑠 = 𝑡
ndsubeqd-P7.RC.2 𝑢 = 𝑤
Assertion
Ref Expression
ndsubeqd-P7.RC (𝑠 = 𝑢𝑡 = 𝑤)

Proof of Theorem ndsubeqd-P7.RC
StepHypRef Expression
1 ndsubeqd-P7.RC.1 . . . 4 𝑠 = 𝑡
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑠 = 𝑡)
3 ndsubeqd-P7.RC.2 . . . 4 𝑢 = 𝑤
43ndtruei-P3.17 182 . . 3 (⊤ → 𝑢 = 𝑤)
52, 4ndsubeqd-P7 856 . 2 (⊤ → (𝑠 = 𝑢𝑡 = 𝑤))
65ndtruee-P3.18 183 1 (𝑠 = 𝑢𝑡 = 𝑤)
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator