PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubeqr-P7.22b.RC

Theorem ndsubeqr-P7.22b.RC 892
Description: Inference Form of ndsubeqr-P7.22b 848.
Hypothesis
Ref Expression
ndsubeqr-P7.22b.RC.1 𝑡 = 𝑢
Assertion
Ref Expression
ndsubeqr-P7.22b.RC (𝑤 = 𝑡𝑤 = 𝑢)

Proof of Theorem ndsubeqr-P7.22b.RC
StepHypRef Expression
1 ndsubeqr-P7.22b.RC.1 . . . 4 𝑡 = 𝑢
21ndtruei-P3.17 182 . . 3 (⊤ → 𝑡 = 𝑢)
32ndsubeqr-P7.22b 848 . 2 (⊤ → (𝑤 = 𝑡𝑤 = 𝑢))
43ndtruee-P3.18 183 1 (𝑤 = 𝑡𝑤 = 𝑢)
Colors of variables: wff objvar term class
Syntax hints:   = wff-equals 6  wff-bi 104  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator