| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > psubinv-P7 | |||
| Description: Proper Substitution Inverse Property. † |
| Ref | Expression |
|---|---|
| psubinv-P7.1 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| psubinv-P7 | ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psubinv-P7.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | ndpsub3-P7.15 840 | . . . 4 ⊢ Ⅎ𝑦[𝑥 / 𝑦][𝑦 / 𝑥]𝜑 | |
| 3 | 1, 2 | ndnfrbi-P7.6.RC 879 | . . 3 ⊢ Ⅎ𝑦(𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑) |
| 4 | ndpsub2-P7.14 839 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 5 | eqsym-P7.CL.SYM 938 | . . . . . 6 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 4, 5 | subiml2-P4.RC 541 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 7 | ndpsub2-P7.14 839 | . . . . 5 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)) | |
| 8 | 6, 7 | bitrns-P3.33c 302 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)) |
| 9 | lemma-L7.01a 924 | . . . . 5 ⊢ ([𝑦 / 𝑧] 𝑧 = 𝑥 ↔ 𝑦 = 𝑥) | |
| 10 | 9 | bisym-P3.33b.RC 299 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ [𝑦 / 𝑧] 𝑧 = 𝑥) |
| 11 | 8, 10 | subiml2-P4.RC 541 | . . 3 ⊢ ([𝑦 / 𝑧] 𝑧 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)) |
| 12 | axL6ex-P7 925 | . . 3 ⊢ ∃𝑧 𝑧 = 𝑥 | |
| 13 | 3, 11, 12 | ndexew-P7.RC.VR1of2 888 | . 2 ⊢ (𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑) |
| 14 | 13 | bisym-P3.33b.RC 299 | 1 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ↔ wff-bi 104 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: psubid-P7 940 |
| Copyright terms: Public domain | W3C validator |