PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubinv-P7

Theorem psubinv-P7 939
Description: Proper Substitution Inverse Property.
Hypothesis
Ref Expression
psubinv-P7.1 𝑦𝜑
Assertion
Ref Expression
psubinv-P7 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem psubinv-P7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 psubinv-P7.1 . . . 4 𝑦𝜑
2 ndpsub3-P7.15 840 . . . 4 𝑦[𝑥 / 𝑦][𝑦 / 𝑥]𝜑
31, 2ndnfrbi-P7.6.RC 879 . . 3 𝑦(𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)
4 ndpsub2-P7.14 839 . . . . . 6 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
5 eqsym-P7.CL.SYM 938 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5subiml2-P4.RC 541 . . . . 5 (𝑦 = 𝑥 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
7 ndpsub2-P7.14 839 . . . . 5 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑))
86, 7bitrns-P3.33c 302 . . . 4 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑))
9 lemma-L7.01a 924 . . . . 5 ([𝑦 / 𝑧] 𝑧 = 𝑥𝑦 = 𝑥)
109bisym-P3.33b.RC 299 . . . 4 (𝑦 = 𝑥 ↔ [𝑦 / 𝑧] 𝑧 = 𝑥)
118, 10subiml2-P4.RC 541 . . 3 ([𝑦 / 𝑧] 𝑧 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑))
12 axL6ex-P7 925 . . 3 𝑧 𝑧 = 𝑥
133, 11, 12ndexew-P7.RC.VR1of2 888 . 2 (𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)
1413bisym-P3.33b.RC 299 1 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubid-P7  940
  Copyright terms: Public domain W3C validator