PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bisym-P3.33b.CL.SYM

Theorem bisym-P3.33b.CL.SYM 301
Description: Closed Symmetric Form of bisym-P3.33b 298.
Assertion
Ref Expression
bisym-P3.33b.CL.SYM ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem bisym-P3.33b.CL.SYM
StepHypRef Expression
1 bisym-P3.33b.CL 300 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 bisym-P3.33b.CL 300 . 2 ((𝜓𝜑) → (𝜑𝜓))
31, 2rcp-NDBII0 239 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subbir-P3.41b  334
  Copyright terms: Public domain W3C validator