PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvex-P7.VR2of2

Theorem cbvex-P7.VR2of2 1068
Description: cbvex-P7 1066 with one variable restriction.

'𝑦' cannot occur in '𝜑'.

Hypotheses
Ref Expression
cbvex-P7.VR2of2.1 𝑥𝜓
cbvex-P7.VR2of2.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex-P7.VR2of2 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦

Proof of Theorem cbvex-P7.VR2of2
StepHypRef Expression
1 cbvex-P7.VR2of2.1 . 2 𝑥𝜓
2 ndnfrv-P7.1 826 . 2 𝑦𝜑
3 cbvex-P7.VR2of2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvex-P7 1066 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator