PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndpsub1-P7.13

Theorem ndpsub1-P7.13 838
Description: Natural Deduction: Proper Substitution Rule 1.

'𝑥' cannot occur in '𝑡'.

Hypotheses
Ref Expression
ndpsub1-P7.13.1 𝑥𝜓
ndpsub1-P7.13.2 (𝑥 = 𝑡 → (𝜑𝜓))
Assertion
Ref Expression
ndpsub1-P7.13 ([𝑡 / 𝑥]𝜑𝜓)
Distinct variable group:   𝑡,𝑥

Proof of Theorem ndpsub1-P7.13
StepHypRef Expression
1 ndpsub1-P7.13.1 . 2 𝑥𝜓
2 ndpsub1-P7.13.2 . 2 (𝑥 = 𝑡 → (𝜑𝜓))
31, 2isubtopsubv-P6 727 1 ([𝑡 / 𝑥]𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  ndpsub1-P7.13.VR  863  cbvall-P7-L1  1060  cbvex-P7-L1  1065
  Copyright terms: Public domain W3C validator