PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnegi-P3.3.CL

Theorem ndnegi-P3.3.CL 242
Description: Closed Form of ndnegi-P3.3 168.
Assertion
Ref Expression
ndnegi-P3.3.CL (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑)

Proof of Theorem ndnegi-P3.3.CL
StepHypRef Expression
1 rcp-NDASM3of3 197 . . 3 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → 𝜑)
2 rcp-NDASM1of3 195 . . 3 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → (𝜑𝜓))
31, 2ndime-P3.6 171 . 2 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → 𝜓)
4 rcp-NDASM2of3 196 . . 3 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → (𝜑 → ¬ 𝜓))
51, 4ndime-P3.6 171 . 2 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → ¬ 𝜓)
63, 5rcp-NDNEGI3 220 1 (((𝜑𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator