| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnegi-P3.3.CL | |||
| Description: Closed Form of ndnegi-P3.3 168. † |
| Ref | Expression |
|---|---|
| ndnegi-P3.3.CL | ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM3of3 197 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDASM1of3 195 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ndime-P3.6 171 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → 𝜓) |
| 4 | rcp-NDASM2of3 196 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → (𝜑 → ¬ 𝜓)) | |
| 5 | 1, 4 | ndime-P3.6 171 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓) ∧ 𝜑) → ¬ 𝜓) |
| 6 | 3, 5 | rcp-NDNEGI3 220 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → ¬ 𝜓)) → ¬ 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 df-rcp-AND3 161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |