PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDSEP4

Theorem rcp-NDSEP4 187
Description: ( 1 2 3 4 ) ( ( 1 2 3 ) 4 ).
Hypothesis
Ref Expression
rcp-NDSEP4.1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
Assertion
Ref Expression
rcp-NDSEP4 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)

Proof of Theorem rcp-NDSEP4
StepHypRef Expression
1 rcp-NDSEP4.1 . 2 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑)
2 df-rcp-AND4 163 . . . 4 ((𝛾₁𝛾₂𝛾₃𝛾₄) ↔ ((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄))
32subiml-P2.8a.SH 129 . . 3 (((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑) ↔ (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑))
43bifwd-P2.5a.SH 112 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜑) → (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑))
51, 4ax-MP 14 1 (((𝛾₁𝛾₂𝛾₃) ∧ 𝛾₄) → 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-rcp-AND4 163
This theorem is referenced by:  rcp-NDNEGI4  221  rcp-NDIMI4  226  rcp-NDORE4  237  rcp-FALSENEGI4  436
  Copyright terms: Public domain W3C validator