| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDSEP4 | |||
| Description: ( 1 ∧ 2 ∧ 3 ∧ 4 ) ⇒ ( ( 1 ∧ 2 ∧ 3 ) ∧ 4 ). |
| Ref | Expression |
|---|---|
| rcp-NDSEP4.1 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) |
| Ref | Expression |
|---|---|
| rcp-NDSEP4 | ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDSEP4.1 | . 2 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) | |
| 2 | df-rcp-AND4 163 | . . . 4 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) ↔ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄)) | |
| 3 | 2 | subiml-P2.8a.SH 129 | . . 3 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) ↔ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → 𝜑)) |
| 4 | 3 | bifwd-P2.5a.SH 112 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃ ∧ 𝛾₄) → 𝜑) → (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → 𝜑)) |
| 5 | 1, 4 | ax-MP 14 | 1 ⊢ (((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) ∧ 𝛾₄) → 𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 ∧ wff-rcp-AND4 162 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-rcp-AND4 163 |
| This theorem is referenced by: rcp-NDNEGI4 221 rcp-NDIMI4 226 rcp-NDORE4 237 rcp-FALSENEGI4 436 |
| Copyright terms: Public domain | W3C validator |