PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDORE5

Theorem rcp-NDORE5 238
Description: Elimination Recipe.
Hypotheses
Ref Expression
rcp-NDORE5.1 ((𝛾₁𝛾₂𝛾₃𝛾₄𝜑) → 𝜒)
rcp-NDORE5.2 ((𝛾₁𝛾₂𝛾₃𝛾₄𝜓) → 𝜒)
rcp-NDORE5.3 ((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝜑𝜓))
Assertion
Ref Expression
rcp-NDORE5 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜒)

Proof of Theorem rcp-NDORE5
StepHypRef Expression
1 rcp-NDORE5.1 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄𝜑) → 𝜒)
21rcp-NDSEP5 188 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝜑) → 𝜒)
3 rcp-NDORE5.2 . . 3 ((𝛾₁𝛾₂𝛾₃𝛾₄𝜓) → 𝜒)
43rcp-NDSEP5 188 . 2 (((𝛾₁𝛾₂𝛾₃𝛾₄) ∧ 𝜓) → 𝜒)
5 rcp-NDORE5.3 . 2 ((𝛾₁𝛾₂𝛾₃𝛾₄) → (𝜑𝜓))
62, 4, 5ndore-P3.12 177 1 ((𝛾₁𝛾₂𝛾₃𝛾₄) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144  wff-rcp-AND4 162  wff-rcp-AND5 164
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND5 165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator