PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orintr-P2.11b.AC.SH

Theorem orintr-P2.11b.AC.SH 149
Description: Deductive Form of orintr-P2.11b 148.
Hypothesis
Ref Expression
orintr-P2.11b.AC.SH.1 (𝛾𝜑)
Assertion
Ref Expression
orintr-P2.11b.AC.SH (𝛾 → (𝜑𝜓))

Proof of Theorem orintr-P2.11b.AC.SH
StepHypRef Expression
1 orintr-P2.11b.AC.SH.1 . 2 (𝛾𝜑)
2 orintr-P2.11b 148 . . . 4 (𝜑 → (𝜑𝜓))
32axL1.SH 30 . . 3 (𝛾 → (𝜑 → (𝜑𝜓)))
43rcp-FR1.SH 40 . 2 ((𝛾𝜑) → (𝛾 → (𝜑𝜓)))
51, 4ax-MP 14 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145
This theorem is referenced by:  ndorir-P3.11  176
  Copyright terms: Public domain W3C validator