PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  truthtbltandt-P4.37a

Theorem truthtbltandt-P4.37a 499
Description: ( T T ) T.
Assertion
Ref Expression
truthtbltandt-P4.37a ((⊤ ∧ ⊤) ↔ ⊤)

Proof of Theorem truthtbltandt-P4.37a
StepHypRef Expression
1 idandtruel-P4.19a 438 1 ((⊤ ∧ ⊤) ↔ ⊤)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator