PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  impoe-P4.4a.RC

Theorem impoe-P4.4a.RC 378
Description: Inference Form of impoe-P4.4a 377.
Hypothesis
Ref Expression
impoe-P4.4a.RC.1 ¬ 𝜑
Assertion
Ref Expression
impoe-P4.4a.RC (𝜑𝜓)

Proof of Theorem impoe-P4.4a.RC
StepHypRef Expression
1 impoe-P4.4a.RC.1 . . . 4 ¬ 𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → ¬ 𝜑)
32impoe-P4.4a 377 . 2 (⊤ → (𝜑𝜓))
43ndtruee-P3.18 183 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  falseimpoe-P4.4c  383
  Copyright terms: Public domain W3C validator