PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andcomm-P3.35-L1

Theorem andcomm-P3.35-L1 313
Description: Lemma for andcomm-P3.35 314.
Assertion
Ref Expression
andcomm-P3.35-L1 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem andcomm-P3.35-L1
StepHypRef Expression
1 rcp-NDASM1of1 192 . . 3 ((𝜑𝜓) → (𝜑𝜓))
21ndandel-P3.8 173 . 2 ((𝜑𝜓) → 𝜓)
31ndander-P3.9 174 . 2 ((𝜑𝜓) → 𝜑)
42, 3ndandi-P3.7 172 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andcomm-P3.35  314
  Copyright terms: Public domain W3C validator