PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  poe-P1.11b.AC.2SH

Theorem poe-P1.11b.AC.2SH 67
Description: Deductive Form of poe-P1.11b 66.
Hypotheses
Ref Expression
poe-P1.11b.AC.2SH.1 (𝛾𝜑)
poe-P1.11b.AC.2SH.2 (𝛾 → ¬ 𝜑)
Assertion
Ref Expression
poe-P1.11b.AC.2SH (𝛾𝜓)

Proof of Theorem poe-P1.11b.AC.2SH
StepHypRef Expression
1 poe-P1.11b.AC.2SH.2 . 2 (𝛾 → ¬ 𝜑)
2 poe-P1.11b.AC.2SH.1 . . . 4 (𝛾𝜑)
3 poe-P1.11b 66 . . . . . 6 (𝜑 → (¬ 𝜑𝜓))
43axL1.SH 30 . . . . 5 (𝛾 → (𝜑 → (¬ 𝜑𝜓)))
54rcp-FR1.SH 40 . . . 4 ((𝛾𝜑) → (𝛾 → (¬ 𝜑𝜓)))
62, 5ax-MP 14 . . 3 (𝛾 → (¬ 𝜑𝜓))
76rcp-FR1.SH 40 . 2 ((𝛾 → ¬ 𝜑) → (𝛾𝜓))
81, 7ax-MP 14 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  ndnege-P3.4  169
  Copyright terms: Public domain W3C validator