PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  qswap-P8

Theorem qswap-P8 1105
Description: Swap Quantifiers (non-freeness condition).
Hypothesis
Ref Expression
qswap-P8.1 𝑥𝜑
Assertion
Ref Expression
qswap-P8 (∃𝑥𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem qswap-P8
StepHypRef Expression
1 qswap-P8.1 . . 3 𝑥𝜑
21nfrexall-P8.CL 1090 . 2 (∃𝑥𝜑 → ∀𝑥𝜑)
3 alleexi-P7.CL 1006 . 2 (∀𝑥𝜑 → ∃𝑥𝜑)
42, 3rcp-NDBII0 239 1 (∃𝑥𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  qswap-P8.VR  1106
  Copyright terms: Public domain W3C validator