PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subandr2-P4.RC

Theorem subandr2-P4.RC 555
Description: Inference Form of subandr2-P4 554.
Hypotheses
Ref Expression
subandr2-P4.RC.1 (𝜒𝜑)
subandr2-P4.RC.2 (𝜑𝜓)
Assertion
Ref Expression
subandr2-P4.RC (𝜒𝜓)

Proof of Theorem subandr2-P4.RC
StepHypRef Expression
1 subandr2-P4.RC.1 . . . 4 (𝜒𝜑)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜒𝜑))
3 subandr2-P4.RC.2 . . . 4 (𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
52, 4subandr2-P4 554 . 2 (⊤ → (𝜒𝜓))
65ndtruee-P3.18 183 1 (𝜒𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator