PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  joinimor2-P4.RC

Theorem joinimor2-P4.RC 585
Description: Inference Form of joinimor2-P4 584.
Hypothesis
Ref Expression
joinimor2-P4.RC.1 ((𝜑𝜓) ∨ (𝜒𝜓))
Assertion
Ref Expression
joinimor2-P4.RC ((𝜑𝜒) → 𝜓)

Proof of Theorem joinimor2-P4.RC
StepHypRef Expression
1 joinimor2-P4.RC.1 . . . 4 ((𝜑𝜓) ∨ (𝜒𝜓))
21ndtruei-P3.17 182 . . 3 (⊤ → ((𝜑𝜓) ∨ (𝜒𝜓)))
32joinimor2-P4 584 . 2 (⊤ → ((𝜑𝜒) → 𝜓))
43ndtruee-P3.18 183 1 ((𝜑𝜒) → 𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator