PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndsubmultl-P7.24d.CL

Theorem ndsubmultl-P7.24d.CL 921
Description: Closed Form of ndsubmultl-P7.24d 854.
Assertion
Ref Expression
ndsubmultl-P7.24d.CL (𝑡 = 𝑢 → (𝑡𝑤) = (𝑢𝑤))

Proof of Theorem ndsubmultl-P7.24d.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝑡 = 𝑢𝑡 = 𝑢)
21ndsubmultl-P7.24d 854 1 (𝑡 = 𝑢 → (𝑡𝑤) = (𝑢𝑤))
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-multl 25
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  example-E7.1b  1075
  Copyright terms: Public domain W3C validator