PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exe-P7r

Theorem exe-P7r 998
Description: Simplified '' Elimination Law.

For the original form, using explicit substitution, see ndexe-P7.20 845 and ndexew-P7 867.

This is the restatement of a previously proven result. Do not use in proofs. Use exe-P7 955 instead.

Hypotheses
Ref Expression
exe-P7r.1 𝑥𝛾
exe-P7r.2 𝑥𝜓
exe-P7r.3 (𝛾 → (𝜑𝜓))
exe-P7r.4 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
exe-P7r (𝛾𝜓)

Proof of Theorem exe-P7r
StepHypRef Expression
1 exe-P7r.1 . 2 𝑥𝛾
2 exe-P7r.2 . 2 𝑥𝜓
3 exe-P7r.3 . 2 (𝛾 → (𝜑𝜓))
4 exe-P7r.4 . 2 (𝛾 → ∃𝑥𝜑)
51, 2, 3, 4exe-P7 955 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator