| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subneg-P2.7 | |||
| Description: Substitution Law for '¬'. |
| Ref | Expression |
|---|---|
| subneg-P2.7 | ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | birev-P2.5b 115 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | 1 | trnsp-P1.15c.AC.SH 82 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 → ¬ 𝜓)) |
| 3 | bifwd-P2.5a 111 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 4 | 3 | trnsp-P1.15c.AC.SH 82 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 2, 4 | bicmb-P2.5c.AC.2SH 121 | 1 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |