PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subneg-P2.7

Theorem subneg-P2.7 127
Description: Substitution Law for '¬'.
Assertion
Ref Expression
subneg-P2.7 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))

Proof of Theorem subneg-P2.7
StepHypRef Expression
1 birev-P2.5b 115 . . 3 ((𝜑𝜓) → (𝜓𝜑))
21trnsp-P1.15c.AC.SH 82 . 2 ((𝜑𝜓) → (¬ 𝜑 → ¬ 𝜓))
3 bifwd-P2.5a 111 . . 3 ((𝜑𝜓) → (𝜑𝜓))
43trnsp-P1.15c.AC.SH 82 . 2 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
52, 4bicmb-P2.5c.AC.2SH 121 1 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator