PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sylt-P1.9.AC.2SH

Theorem sylt-P1.9.AC.2SH 62
Description: Deductive Form of sylt-P1.9 61.
Hypotheses
Ref Expression
sylt-P1.9.AC.2SH.1 (𝛾 → (𝜑𝜓))
sylt-P1.9.AC.2SH.2 (𝛾 → (𝜓𝜒))
Assertion
Ref Expression
sylt-P1.9.AC.2SH (𝛾 → (𝜑𝜒))

Proof of Theorem sylt-P1.9.AC.2SH
StepHypRef Expression
1 sylt-P1.9.AC.2SH.2 . 2 (𝛾 → (𝜓𝜒))
2 sylt-P1.9.AC.2SH.1 . . . 4 (𝛾 → (𝜑𝜓))
3 sylt-P1.9 61 . . . . . 6 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
43axL1.SH 30 . . . . 5 (𝛾 → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
54rcp-FR1.SH 40 . . . 4 ((𝛾 → (𝜑𝜓)) → (𝛾 → ((𝜓𝜒) → (𝜑𝜒))))
62, 5ax-MP 14 . . 3 (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
76rcp-FR1.SH 40 . 2 ((𝛾 → (𝜓𝜒)) → (𝛾 → (𝜑𝜒)))
81, 7ax-MP 14 1 (𝛾 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-MP 14
This theorem is referenced by:  orelim-P2.11c  150
  Copyright terms: Public domain W3C validator