PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-FR1

Theorem rcp-FR1 39
Description: Frege Axiom with One Antecedent.
Assertion
Ref Expression
rcp-FR1 ((𝛾₁ → (𝜑𝜓)) → ((𝛾₁𝜑) → (𝛾₁𝜓)))

Proof of Theorem rcp-FR1
StepHypRef Expression
1 ax-L2 12 1 ((𝛾₁ → (𝜑𝜓)) → ((𝛾₁𝜑) → (𝛾₁𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10
This theorem was proved from axioms:  ax-L2 12
This theorem is referenced by:  rcp-FR1.SH  40  rcp-FR2  41
  Copyright terms: Public domain W3C validator