PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  simpl-L2.2a.SH

Theorem simpl-L2.2a.SH 96
Description: Inference from simpl-L2.2a 95.
Hypothesis
Ref Expression
simpl-L2.2a.SH.1 ¬ (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
simpl-L2.2a.SH 𝜑

Proof of Theorem simpl-L2.2a.SH
StepHypRef Expression
1 simpl-L2.2a.SH.1 . 2 ¬ (𝜑 → ¬ 𝜓)
2 simpl-L2.2a 95 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜑)
31, 2ax-MP 14 1 𝜑
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by:  mbifwd-P2.1a  101  dfbionlyif-P2.3b  109
  Copyright terms: Public domain W3C validator