PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bijust-P2.2

Theorem bijust-P2.2 106
Description: Justification Theorem for df-bi-D2.1 107.
Assertion
Ref Expression
bijust-P2.2 ¬ ((¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))

Proof of Theorem bijust-P2.2
StepHypRef Expression
1 bijust-P2.2-L1 105 1 ¬ ((¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator