PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  submultd-P5.CL

Theorem submultd-P5.CL 652
Description: Closed Form of submultd-P5 651.
Assertion
Ref Expression
submultd-P5.CL ((𝑠 = 𝑡𝑢 = 𝑤) → (𝑠𝑢) = (𝑡𝑤))

Proof of Theorem submultd-P5.CL
StepHypRef Expression
1 rcp-NDASM1of2 193 . 2 ((𝑠 = 𝑡𝑢 = 𝑤) → 𝑠 = 𝑡)
2 rcp-NDASM2of2 194 . 2 ((𝑠 = 𝑡𝑢 = 𝑤) → 𝑢 = 𝑤)
31, 2submultd-P5 651 1 ((𝑠 = 𝑡𝑢 = 𝑤) → (𝑠𝑢) = (𝑡𝑤))
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L9-multl 25  ax-L9-multr 26
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  nfrmult-P6  782
  Copyright terms: Public domain W3C validator