PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  submultl-P5

Theorem submultl-P5 649
Description: Left Substitution Law for ''.
Hypothesis
Ref Expression
submultl-P5.1 (𝛾𝑡 = 𝑢)
Assertion
Ref Expression
submultl-P5 (𝛾 → (𝑡𝑤) = (𝑢𝑤))

Proof of Theorem submultl-P5
StepHypRef Expression
1 submultl-P5.1 . 2 (𝛾𝑡 = 𝑢)
2 ax-L9-multl 25 . 2 (𝑡 = 𝑢 → (𝑡𝑤) = (𝑢𝑤))
31, 2syl-P3.24.RC 260 1 (𝛾 → (𝑡𝑤) = (𝑢𝑤))
Colors of variables: wff objvar term class
Syntax hints:  term-mult 5   = wff-equals 6  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-L9-multl 25
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  submultd-P5  651  ndsubmultl-P7.24d  854
  Copyright terms: Public domain W3C validator