PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rimoverand-P4.31a

Theorem rimoverand-P4.31a 481
Description: '' is Antidistributive on the Right Over ''.
Assertion
Ref Expression
rimoverand-P4.31a (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))

Proof of Theorem rimoverand-P4.31a
StepHypRef Expression
1 sepimandl-P4.9d.CL 417 . 2 (((𝜑𝜓) → 𝜒) → ((𝜑𝜒) ∨ (𝜓𝜒)))
2 rimoverand-P4.31-L1 480 . 2 (((𝜑𝜒) ∨ (𝜓𝜒)) → ((𝜑𝜓) → 𝜒))
31, 2rcp-NDBII0 239 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜒) ∨ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator