PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimorr-P4.9c.CL

Theorem sepimorr-P4.9c.CL 414
Description: Closed Form of sepimorr-P4.9c 412.
Assertion
Ref Expression
sepimorr-P4.9c.CL ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))

Proof of Theorem sepimorr-P4.9c.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓𝜒)))
21sepimorr-P4.9c 412 1 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∨ (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  imoveror-P4.29b  474
  Copyright terms: Public domain W3C validator