PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  sepimandl-P4.9d.RC

Theorem sepimandl-P4.9d.RC 416
Description: Inference Form of sepimandl-P4.9d 415.
Hypothesis
Ref Expression
sepimandl-P4.9d.RC.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
sepimandl-P4.9d.RC ((𝜑𝜒) ∨ (𝜓𝜒))

Proof of Theorem sepimandl-P4.9d.RC
StepHypRef Expression
1 sepimandl-P4.9d.RC.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ndtruei-P3.17 182 . . 3 (⊤ → ((𝜑𝜓) → 𝜒))
32sepimandl-P4.9d 415 . 2 (⊤ → ((𝜑𝜒) ∨ (𝜓𝜒)))
43ndtruee-P3.18 183 1 ((𝜑𝜒) ∨ (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator