PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  trnsp-P3.31c.RC

Theorem trnsp-P3.31c.RC 286
Description: Inference Form of trnsp-P3.31c 285.
Hypothesis
Ref Expression
trnsp-P3.31c.RC.1 (𝜑𝜓)
Assertion
Ref Expression
trnsp-P3.31c.RC 𝜓 → ¬ 𝜑)

Proof of Theorem trnsp-P3.31c.RC
StepHypRef Expression
1 trnsp-P3.31c.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32trnsp-P3.31c 285 . 2 (⊤ → (¬ 𝜓 → ¬ 𝜑))
43ndtruee-P3.18 183 1 𝜓 → ¬ 𝜑)
Colors of variables: wff objvar term class
Syntax hints:  ¬ wff-neg 9  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  allnegex-P7-L2  957
  Copyright terms: Public domain W3C validator