PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverimex-P7r

Theorem alloverimex-P7r 1028
Description: Alternate version of alloverim-P7r 1017 that produces existential quantifiers.

The closed form is axL4ex-P7 946.

This is a restatement of a previously proven result. Do not use in proofs. Use alloverimex-P7 948 instead.

Hypothesis
Ref Expression
alloverimex-P7r.1 (𝛾 → ∀𝑥(𝜑𝜓))
Assertion
Ref Expression
alloverimex-P7r (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem alloverimex-P7r
StepHypRef Expression
1 alloverimex-P7r.1 . 2 (𝛾 → ∀𝑥(𝜑𝜓))
21alloverimex-P7 948 1 (𝛾 → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator