PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverim-P7.GENF.RC

Theorem dalloverim-P7.GENF.RC 1027
Description: Inference form of dalloverim-P7.GENF 1025.
Hypothesis
Ref Expression
dalloverim-P7.GENF.RC.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
dalloverim-P7.GENF.RC (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))

Proof of Theorem dalloverim-P7.GENF.RC
StepHypRef Expression
1 ndnfrv-P7.1 826 . . 3 𝑥
2 dalloverim-P7.GENF.RC.1 . . . 4 (𝜑 → (𝜓𝜒))
32ndtruei-P3.17 182 . . 3 (⊤ → (𝜑 → (𝜓𝜒)))
41, 3dalloverim-P7.GENF 1025 . 2 (⊤ → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
54ndtruee-P3.18 183 1 (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  example-E7.1b  1075
  Copyright terms: Public domain W3C validator