| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > exia-P7r.RC | |||
| Description: Inference Form of exia-P7r 1011. †
This is the restatement of a previously proven result. Do not use in proofs. Use exia-P7 953 instead. |
| Ref | Expression |
|---|---|
| exia-P7r.RC.1 | ⊢ Ⅎ𝑥𝜓 |
| exia-P7r.RC.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exia-P7r.RC | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exia-P7r.RC.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | exia-P7r.RC.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | exia-P7.RC 954 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: exia-P7r.RC.VR 1016 |
| Copyright terms: Public domain | W3C validator |