PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndalle-P7.18.RC

Theorem ndalle-P7.18.RC 885
Description: Inference Form of ndalle-P7.18 843.
Hypothesis
Ref Expression
ndalle-P7.18.RC.1 𝑥𝜑
Assertion
Ref Expression
ndalle-P7.18.RC [𝑡 / 𝑥]𝜑

Proof of Theorem ndalle-P7.18.RC
StepHypRef Expression
1 ndalle-P7.18.RC.1 . . . 4 𝑥𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → ∀𝑥𝜑)
32ndalle-P7.18 843 . 2 (⊤ → [𝑡 / 𝑥]𝜑)
43ndtruee-P3.18 183 1 [𝑡 / 𝑥]𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-true 153  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator