PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexew-P7.RC

Theorem ndexew-P7.RC 887
Description: Inference Form of ndexew-P7 867.
Hypotheses
Ref Expression
ndexew-P7.RC.1 𝑦𝜑
ndexew-P7.RC.2 𝑦𝜓
ndexew-P7.RC.3 ([𝑦 / 𝑥]𝜑𝜓)
ndexew-P7.RC.4 𝑥𝜑
Assertion
Ref Expression
ndexew-P7.RC 𝜓
Distinct variable group:   𝑥,𝑦

Proof of Theorem ndexew-P7.RC
StepHypRef Expression
1 ndexew-P7.RC.1 . . 3 𝑦𝜑
2 ndexew-P7.RC.2 . . 3 𝑦𝜓
3 ndexew-P7.RC.3 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
43ndtruei-P3.17 182 . . 3 (⊤ → ([𝑦 / 𝑥]𝜑𝜓))
5 ndexew-P7.RC.4 . . . 4 𝑥𝜑
65ndtruei-P3.17 182 . . 3 (⊤ → ∃𝑥𝜑)
71, 2, 4, 6ndexew-P7.VR1of3 868 . 2 (⊤ → 𝜓)
87ndtruee-P3.18 183 1 𝜓
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-true 153  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  ndexew-P7.RC.VR1of2  888  ndexew-P7.RC.VR2of2  889  ndexew-P7.RC.VR12of2  890
  Copyright terms: Public domain W3C validator