| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndexew-P7.RC | |||
| Description: Inference Form of ndexew-P7 867. † |
| Ref | Expression |
|---|---|
| ndexew-P7.RC.1 | ⊢ Ⅎ𝑦𝜑 |
| ndexew-P7.RC.2 | ⊢ Ⅎ𝑦𝜓 |
| ndexew-P7.RC.3 | ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| ndexew-P7.RC.4 | ⊢ ∃𝑥𝜑 |
| Ref | Expression |
|---|---|
| ndexew-P7.RC | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndexew-P7.RC.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | ndexew-P7.RC.2 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
| 3 | ndexew-P7.RC.3 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| 5 | ndexew-P7.RC.4 | . . . 4 ⊢ ∃𝑥𝜑 | |
| 6 | 5 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → ∃𝑥𝜑) |
| 7 | 1, 2, 4, 6 | ndexew-P7.VR1of3 868 | . 2 ⊢ (⊤ → 𝜓) |
| 8 | 7 | ndtruee-P3.18 183 | 1 ⊢ 𝜓 |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 → wff-imp 10 ⊤wff-true 153 ∃wff-exists 595 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: ndexew-P7.RC.VR1of2 888 ndexew-P7.RC.VR2of2 889 ndexew-P7.RC.VR12of2 890 |
| Copyright terms: Public domain | W3C validator |